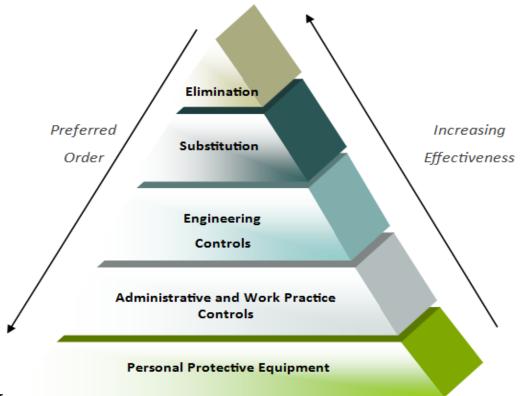
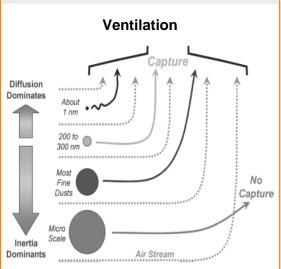


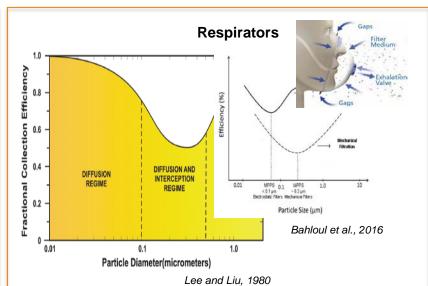
Review of Risk Management Measures for nanomaterials

EXPOSURE TO ENM



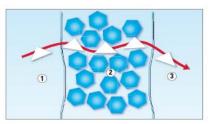
Emission Source	NPs Type	Measured levels range
Primary / SD1		
Liquid-phase reaction	PGNP	4.0x10 ⁴ to 11.0x10 ⁶
Flame spraying	PGNP	4.7x10 ³ to 1.0x10 ⁶
CVD	PGNP	Non-significant
Top-down (milling)	ENPs /	3.0 10 ³ to 1.0x10 ⁶
	PGNP	
Secondary NP aerosol / SD2		
Weighing of powders	ENPs	2.0X10 ⁴ to 7.0x10 ⁴
Harvesting	ENPs	2.0X10 ⁴ to 5.0x10 ⁴
Manual packaging (Bagging)	ENPs /	20.0x10 ⁴
	PGNP	
Bag emptying of powders	ENPs	Significant increase
Melt Blending	ENPs /	> 1.0x10 ⁵
	PGNP	
SD3a / SD3b		
Spraying of liquid	ENPs	2.0x10 ⁸
Spraying (gas)	ENPs	1.6x10 ⁵ to 2.0x10 ¹⁰
Injection Molding	ENPs	$> 8.0 \times 10^5$
Brushing and rolling	ENPs	$> 6.0 \times 10^5$
Sonication of	ENPs	> 8.0x10 ⁶
nanodispersions		
Tertiary NP aerosol / SD4		
Abrasion of nanoproducts	PM / EMNP	8.0x10 ³ to 2.0x10 ⁴
Drilling	PM / EMNP	4.0x10 ⁴
Grinding	PM / EMNP	3.0x10 ³ to 1.0x10 ⁶


HIERARCHY OF RISK MANAGEMENT MEASURES


SOME KEY PRINCIPLES

Schulte et al., 2008

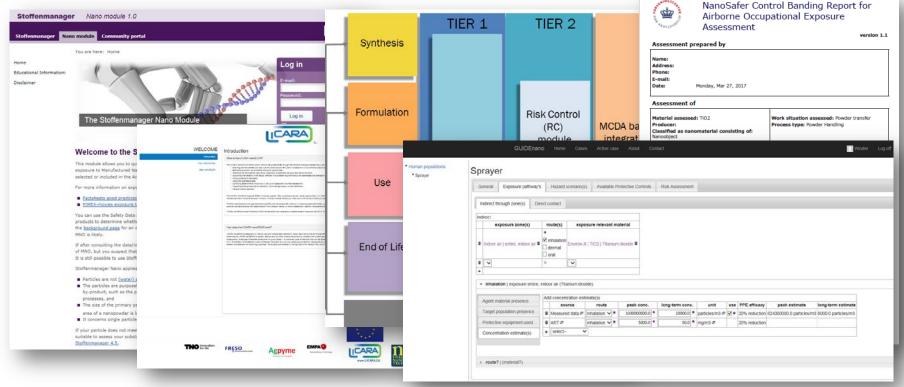
For particles < 200nm diffusion dominates & capture efficiency expected to decrease


Review of Risk Management Measures for nanomaterials

Small particles are bombarded by air molecules and cause particles to deviate from the airstream and trapped on filter media more efficiently (single fibre filtration theory)

Electrostatically charged filters increase the filtration efficiency

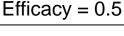
Clothing / gloves



Normalized breakthrough time at a permeation rate of 1.0 µg/(cm²-min) in minutes	EN Class
> 10	1
> 30	2
> 60	3
> 120	4
> 240	5
> 480	6

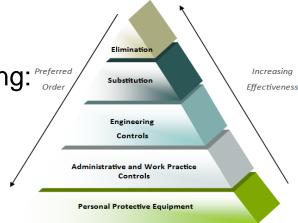
Nano-sized particles may under certain conditions more easily permeate and penetrate through some types of protective materials / textiles / fabrics

RMM FOR EXPOSURE / RISK ASSESSMENT



LOCALIZED CONTROLS

- Suppression techniques
 - Wetting at the point of release
 -) Knockdown suppression
- Containment (non-extracted)
- Local ventilation systems
 - Receiving hoods
 - Canopy hoods (hot processes)
 - Other receiving hoods
 - Capturing hoods
 - Fixed
 - Movable
 - On-tool (integrated) extraction
 - Enclosing hoods
 - Glove box
 - Fume cupboard
 - LEV systems with partial enclosure (no front cover)



REVIEW THE EFFICIENCY OF RMM

Derive quantitative effectiveness values for modeling: Preferred order / Or

- Differences in the effectiveness of RMM for nanomaterials versus conventional materials?
- Adjust existing effectiveness values of RMM relevant for conventional substances? If so, what is the rationale and evidence we base these values on?

Selected RMM:

- Engineering controls
- Respiratory Protective Equipment (RPE)
- Skin Protective Equipment (SPE) gloves and clothing

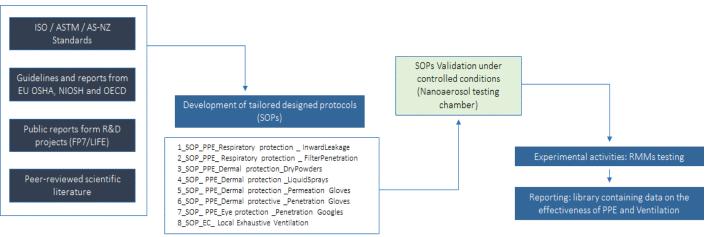
METHODOLOGY

- Review of published literature (2005 to 2016), incl. experimental studies performed in Guidenano (WP8) and other EU funded projects
- Derive conservative values for modelling purposes → 90% CI of the 5% percentile
- Evaluation included nano-specific and conventional data; and agglomerated / aggregated particles
- Considering all available information, incl. existing models, databases, experimental data, literature and regulatory bodies

AVAILABLE DATA

RMM	Studies (data points)*	Remarks
Engineering controls	12 (75)	 10 types of controls (based on ART categories) Range of NMs, e.g. TiO₂, CNT, SiO₂, graphene; mostly ~5 to 560 nm tested Cross-sectional & (semi-) experimental methods
Respiratory Protective Equipment	15 <i>(365)</i>	 9 types of respirator types (based on OSHA Regulation, 29 CFR1910) Mostly NaCl, also SiO₂, TiO₂, etc; <100nm (mono-/polydisperse) tested Majority experimental studies, static or dynamic tests
Skin Protective Equipment - Clothing - Gloves	7 (163) 2 (31)	 7 types of protective clothing, 8 glove types (based on Directive 89/686/EEC) Mostly NaCl, SiO₂, TiO₂, etc; gloves (colloidal aerosol 20-110nm); clothing (solid & colloidal aerosol 20-300nm) Experimental, various test methods, static & dynamic

^{* 36} of the ~90 pre-screened studies (incl. experimental data) could be used to derive quantitative effectiveness values



RMM TESTING APPROACHES (SOPS)

Evaluation of RMM effectiveness requires the definition of reliable, robust and reproducible testing approaches

DEFINITION OF TESTING APPROACHES (SOPS)

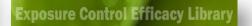
ITENE exposure chamber prototype, developed within the EU NanoRisk and EU GuideNano.

- Validation of developed SOPs
- Development of experimental set-ups
- Protocols were revisited and when necessary, adapted to the limitations of the experimental tests.

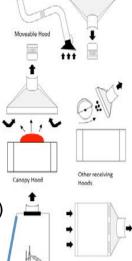
ENGINEERING CONTROLS

	Efficiency (%)			
		Nano dataset ^A	Proposed*	Specific sources ^B
Physical containment	Low to high level	50 – 99.999	85-99.9	ART/ECEL, Tsai et al., 2008/2012
Passiving boods	Canopy hoods	-	50	ART/ECEL, Lo et al., 2012; Methmer et al., 2012
Receiving hoods	Other receiving hoods	-	80	ART/ECEL
	Fixed	75 – 100	90	Lee et al., 2007, Methmer 2008
Capturing hoods	Movable	46 – 97	50	Methmer 2008, Frijns et al., 2016
	On-tool	-	90	ART/ECEL
Enclosing hoods	Fume cupboard	57 – 95	90	ART/ECEL; Tsai et al., 2008/9
	Horizontal / downward laminar flow booth, other	-	90	ART/ECEL
Glove bags	Non ventilated	-	99	ART/ECEL
	Ventilated or kept under negative pressure	-	99.9	ART/ECEL
Glove boxes	Low to high specification	~97–98 (n=2)	98 – 99.99	ART/ECEL, Debia et al., 2013
Suppression	Wetting at release point	68 – 99	90	ART/ECEL, Bello et al., 2009
techniques	Knockdown suppression	-	30	ART/ECEL

^{*} Proposed value based on all sources


A Based on reviewed nano dataset (min-max)

B Specific sources that determined the proposed value



ENGINEERING CONTROLS

- Generally, very small datasets available. Most data on fixed capturing hoods (n=26).
- Deviations from existing values (of conventional substances) as proposed by ART/ECEL include:
 - More conservative values for containment (85 99.9%) considering increased diffusion and escape of NPs
 - Fume cupboards assigned with less effective value (90%) (Tsai et al., 2008/9)
 - More conservative values for low and medium specification glove boxes (98% & 99.9%)
- Consider various confounding factors when more data become available, e.g. location of measurements, types of nanoparticles

RESPIRATORY PROTECTIVE EQUIPMENT (RPE)

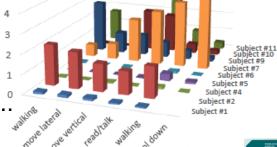
Control measure	Efficiency (%)		Specific sources ^B	
		Nano dataset ^A	Proposed*	
	FFP1	~43 - 95	50	
Filtering half mask (disposable)	FFP2	~50 – 99.999	80	APFs (EN 529, 2005 from 5 countries - Finland, Denmark,
· · · ·	FFP3	~78 – 99.9999	90	Italy, Sweden, United
Filtering half mask, unpowered	Half mask + P2	~47 – 99.997	85	Kingdom),
(elastomeric face piece)	Half mask + P3	~50 – 99.9999	90	OSHA 29 CFR 1910.134 (2006), NIOSH Decision Logic (2004) ANSI Z88.2 (1992) BS 4275 (1997) Shaffer & Rengasamy, 2009
Filtering full mask, unpowered	Full Mask + P2	~98–99.9 (n=2)	85	
(elastomeric face piece)	Full mask + P3	~99.5–99.9998	90	
Powered Air Purifying Respirator (PAPR)	Helmet / hood	(>99.9999)	85 90 98 (TH1, TH2, TH3)	Stoffenmanager-nano



- * Proposed value based on all sources
- A Based on reviewed nano dataset incl. experimental data obtained in EU projects
- B Specific sources that determined the proposed value

RESPIRATORY PROTECTIVE EQUIPMENT (RPE)

Most data available on filtering (disposable) half masks under experimental conditions. No or limited data available on other respirator types



In some cases experimental tests show an increased efficiency of respirators for nanoparticles compared to their certified protection values

Total inward leakage (TIL) is by seal leakage rather than filter penetration

conservative values and worst case simulations (non-optimal fit /s simulated leaks) were also considered to propose values

Available data difficult to interpret considering different test types (static/dynamic), test conditions, leakage/fit, etc.

PROTECTIVE CLOTHING

Control measure		Efficiency (%)			
		Nano dataset ^A	Proposed*	Specific sources ^B	
Woven materials	Laboratory (cotton) coat	~40 – 64	40 (s) 25 (l)	Park et al., 2011 Rengasamy et al., 2010	
Non-woven materials Pro Cat	Polypropylene, frocks (Cat I, Type 6)	~70 – 99	70 (s) 50 (l)	Gao et al., 2010	
	Protective clothing (e.g. Tyvek, Cat III, Types 3B, 4B, 5B & 6B; Tychem, Types 5B and 6B)	~92 – 99.9	95 (Type 3, liquid-tight) 90 (Type 4, spray tight) 90 (Type 5, particle) 85 (Type 6, lim. spray tight)	TNsGs 2007, 2010; OECD, 2009 Gao et al., 2010 Spaan et al., 2013 Ling et al, 2012	
	Protective clothing (double-side PVD coated Nylon, Cat III Type 4)	40	(40)	-	
	Self-ventilated / overpressure suit (Cat III, Type 1)	99.999 – 99.9999	99.9 (s/I)	-	

^{*} Proposed value based on all sources

A Based on reviewed nano dataset, incl. experimental data obtained in EU projects

B Specific sources that determined the proposed value

GLOVES

Control measure		Efficiency (%)			
		Nano dataset ^A	Proposed*	Specific sources ^B	
Disposable protective gloves	Nitrile Thin	~41 – 99.96	70 (s/l)	Vinches et al, 2014; Dolez et al., 2013	
	Nitrile Thick	~48 – 99.99	95 (new double gloves) 90 (s)	TNsGs 2002, 200; OECD, 2009 Dolez et al. (2013) Vinches et al (2014) Spaan et al., 2013	
	Vinyl	-			
	Non powder Vinyl	-			
	Non powder Latex	~77 –99.99			
Reusable	Neoprene / Natural Latex	~77 –99.99	85 (I)		
	PVC	~68 – 97			
	Butyl	~49 – 99.99	70 (s/l)	Vinches et al, 2014; Dolez et al., 2013; Delpivo et al., 2016	

- * Proposed value based on all sources (if correct selection/guidance applies)
- A Based on reviewed nano dataset, incl. experimental data obtained in EU projects
 - Specific sources that determined the proposed value

NITRILE

LAMINATE FILM

BARRIER™

SOL-VEX®

UNSUPPORTED NEOPRENE 29-SERIES SUPPORTED POLYVINYL ALCOHOL PVA™ POLYVINYL CHLORIDE (Vinyl) SNORKEL® NATURAL RUBBER N *CANNERS AND HANDLERS™

NEOPRENE/ NATURAL RUBBER BLEND *CHEMI-PRO®

BUTYL UNSUPPORTED CHEMTEK™ BUTYL

CHEMTEK™ VITON/BUTYL

PROTECTIVE CLOTHING & GLOVES

- Limited number experimental (static & dynamic) studies currently available on a limited number of clothing types & gloves
- Protection values proposed based on experimental findings and values from Technical Notes (TNsGs) for conventional substances and other sources:
 - Very high protection values measured experimentally, more conservative values proposed for protective clothing, e.g. Tyvek, Cat III, Types 3B, 4B, 5B & 6B (85-95%)
 - For thin nitrile gloves and butyl gloves, a lower protection value is proposed (70%) compared with other gloves (Vinches et al., 2014; Dolez et al., 2013)
- Issues of concern for evaluation purposes:
 - Different test methods & conditions (e.g. through-diffusion & filtration-based test bench studies, static manikin and dynamic subject test protocols in chambers)
 - Different types of nanomaterials (NaCl, Ag, Fe₃O₄, TiO₂, SiO₂)

www.ecellibrary.com

CONSTRUCTION INDUSTRY

100 - 500 x OEL

50 - 100 x OEL

1 - 50 x OEL

Prevention factor: 90x

GUIDANCE

Guidance

Welcome to the NanoRISK Risk Me **Measures Library**

Open / Refine Study Start New Study Library of Individual Measures

Sector / Proccess related RMMs

References

GUIDANCE ON RECOMMEND **MEASURES A CONTROLS F** MITIGATING **RISK POSED** ENGINEERE **NANOMATE**

LIFE NanoRISK

Best practices effectiveness, prevention protection measures for control of risk by engineered nanomaterials

Instruction sheets

Respiratory protection equipment

FFR- Particulate Filtering Face piece Respirators (Filtering half mask)

 EN 13274-12001. Respiratory protective devices. Methods of test. Determination of Inv EN 13274-7-2008 Respiratory protective devices. Methods of test. Determination of pr

Full Face Masks (Filters: P1/P2/P3)

Particulate filters (Cartridges)

CERTIFICATION AND TESTING

MAINTENANCE AND CLEANING

- Laboratory Glove Box (complete enclosure) - Down-flow room (complete enclosure) Horizontal/downward laminar flow booth - Laboratory Hood (partial enclosure)

Movable LEV systems (extendable arms) HEPA Filtered down flow booth · Fixed Capturing Hoods - On tool extraction

- Paint spray booth (partial enclosure) CERTIFICATION AND TESTING

EN 14175-6-2005 Filme cupboards . Part 4. On-site less methods SN 14178-4-2005. Futne cupboards. Part 4. On-site test methods
 ASHRAE 52 2007. Method of testing general ventilistion air-Eleaning devices for removal efficiency by c) Receiving hoods

MAINTENANCE AND CLEANING

Maintenance Opening: The entire mechanical and electrical equipment of the ventilation system should

to accessible via a secure and suitable opening.

• A furne cuphourd function display should be installed to definitely indicate the current functioning of the fune cupboard airtiaw.

Routine checks on LEV systems must be undertaken by appropriately trained employees. The frequency of euro, should main be decomposited for the maskers reference to the maskers frequency for the maskers frequency. *Routing Checks on LEV systems must be undertaken by appropriately trained employees. The frequency of such checks will be destinating by making reference to the transductions' a recommendations. This requestion is a considerable for the proposal for the common destination of the proposal for the common destination of the proposal for the common destination. of such Checks will be determined by making reference to the manufacturer's recommendations risk assessment findings, provious maintenance history, etc. and should be recorded in the systems topicod.

* Godge Lang. Houseph virial as amounting to supply the LEV to instrument according to the systems topicod.

**TEXT TO A PROVIDE THE STATE OF assessment findings previous maintenance history, etc and should be recorded in the systems logicox

1 Birline use: thorough visual examination to verify the LEV is in efficient working order in good repair and in a claim condition

• When natalling CEV use a repulsable supplier, with experience of the type of control that is needed who

RECOMMENDED RPE AGAINST ENMS - Local exhaust enclosure (Glove Box)

 Ventilated Laboratory Hood (partial enclosure) - HEPA filtered down flow booth

Ventilated Laboratory Hood + built-in water wash - Movable LEV systems (extendable arms)

RECOMMENDED RPE AGAINST ENMS Half Mask Respirators (Filters: P3) Full Face Masks (Filters: P3)

hoses, and any cartridges, canisters, or filters.

Perform a negative or positive seal check each time before entering a contaminated area.

Inspect respirators for cleanliness and damage before each use.

 Store respirator in sealed bag in a clean, dry, non-contaminated area. Replace respirator and/or cartridge or filter if it is damaged, distorted, a proper

If your respirator fails an inspection or is defective, your employer must remo

Filtering face piece respirators can be reused by the same worker, but only if the r

properly, its shape remains unchanged, and the filter material is not physically da

A respirator inspection must include a check of the respirator's ability to work pri

any connections; and the condition of the various parts, such as the face piece, hy

LIFE12 EW/ES/000178

Review of Risk Management Measures for nanomaterials

avanzare

GUIDANCE AND RELEVANCE OF RMM IN THE WORKPLACE

ARE CURRENT RMMS EFFICIENT AGAINST ENMS?

- If engineering controls (ECs) are **well designed**, they will be effective in limiting environmental release and workplace exposure
- Existing ECs need to be supplemented by good practices and the use of appropriate personal protective equipment (PPE)
- A key parameter to ensure the effectiveness of respiratory protective equipment is the face seal
- The use of double gloves is recommended. Latex / nitrile gloves when handling nano-powders and nanoparticles in water suspension. Butyl rubber gloves recommended when handling ENMs dispersed in solvents.
- The use of materials made of non-woven high density polyethylene textile offers excellent barrier protection for sub-micron particles

CONCLUSIONS

- A challenge to propose efficiency values considering the large scope in test methods, test conditions, materials, etc.
- More nano-specific data required for all RMMs to evaluate their efficiency (e.g. to apply a 5th perc) and consider confounding factors involved
- For exposure / risk assessment
 - Converge all the available evidence
 - Apply conservative estimate including potential variability in safe use
- More data needed of (simulated) workplace conditions to also obtain more realistic data

ACKNOWLEDGEMENTS

Sustainable Nanotechnologies Project

